On the Product of Small Elkies Primes

نویسنده

  • Igor E. Shparlinski
چکیده

Given an elliptic curve E over a finite field Fq of q elements, we say that an odd prime l ∤ q is an Elkies prime for E if tE − 4q is a quadratic residue modulo l, where tE = q+1−#E(Fq) and #E(Fq) is the number of Fq-rational points on E. These primes are used in the presently most efficient algorithm to compute #E(Fq). In particular, the bound Lq(E) such that the product of all Elkies primes for E up to Lq(E) exceeds 4q 1/2 is a crucial parameter of this algorithm. We show that there are infinitely many pairs (p,E) of primes p and curves E over Fp with Lp(E) ≥ c log p log log log p for some absolute constant c > 0, while a naive heuristic estimate suggests that Lp(E) ∼ log p. This complements recent results of Galbraith and Satoh (2002), conditional under the Generalised Riemann Hypothesis, and of Shparlinski and Sutherland (2012), unconditional for almost all pairs (p,E).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.

متن کامل

Schoof's algorithm and isogeny cycles

The heart of Schoof's algorithm for computing the cardinal-ity m of an elliptic curve over a nite eld is the computation of m modulo small primes`. Elkies and Atkin have designed practical improvements to the basic algorithm, that make use of \good" primes`. We show how to use powers of good primes in an eecient way. This is done by computing isogenies between curves over the ground eld. A new ...

متن کامل

Remarks on the Schoof-Elkies-Atkin algorithm

Schoof’s algorithm computes the number m of points on an elliptic curve E defined over a finite field Fq. Schoof determines m modulo small primes ` using the characteristic equation of the Frobenius of E and polynomials of degree O(`2). With the works of Elkies and Atkin, we have just to compute, when ` is a “good” prime, an eigenvalue of the Frobenius using polynomials of degree O(`). In this ...

متن کامل

Drinfeld Modules with No Supersingular Primes

We give examples of Drinfeld modules φ of rank 2 and higher over Fq(T ) that have no primes of supersingular reduction. The idea is to construct φ so that the associated mod ` representations are incompatible with the existence of supersingular primes. We also answer a question of Elkies by proving that such obstructions cannot exist for elliptic curves over number fields. Elkies [El1] proved t...

متن کامل

Distinct Fuzzy Subgroups of a Dihedral Group of Order $2pqrs$ for Distinct Primes $p, , q, , r$ and $s$

In this paper we classify fuzzy subgroups of the dihedral group $D_{pqrs}$  for distinct primes  $p$, $q$, $r$ and $s$. This follows similar work we have done on distinct fuzzy subgroups of some dihedral groups.We present formulae for the number of (i) distinct maximal chains of subgroups, (ii) distinct fuzzy subgroups and (iii) non-isomorphic classes of fuzzy subgroups under our chosen equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1301.0035  شماره 

صفحات  -

تاریخ انتشار 2012